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We examine the effect of harmonic high-frequency vibrations on advective plane- 
parallel liquid flow in a plane horizontal layer. 

A plane-parallel advective flow arises in a plane horizontal layer of a liquid in the 
presence of a constant longitudinal temperature gradient [i, 2]. Flows of this type are of 
interest, in particular, in connection with an examination of the process of growing crystals 
by the method of directed crystallization (see [3]). Below we consider the effect of har- 
monic high-frequency vibrations on advective flow. 

A plane horizontal liquid layer of infinite extent in the horizontal directions is 
bounded by solid parallel planes x = • (the x axis is directed vertically upward, while the 
y and z axes are directed in the plane of the layer). A constant temperature gradient A is 
given for both boundaries of the layer, which is directed along the z axis: VT (0, 0, A). 
The liquid layer executes harmonic vibrations in some direction characterized by the unit 
vector n; ~ denotes the vibration frequency and the displacement amplitude is denoted b. 
The equations describing the averaged fields of velocity v, temperature T, and pressure p, 
in the limit case of high frequencies, have the form 

0v 1 
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VP + ray +~g[~T~, + 8 (wv) (Tn -- w), 

c)--T-T + v v  T =xAT, divv=0, divw=0, r o t w = v  T x n .  
c)t 

(i) 

Here w is the solenoidal portion of the vector field Tn, proportional to the amplitude of 
the pulsation velocity component; e = ($bS)2/2 is the parameter which defines the effect of 
vibration on convection at the limit of high frequencies. Equations (i) are frequently uti- 
lized to solve various problems in the theory of convection when high-frequency vibrations 
are present [4-6]. 

Let us initially consider the case of a longitudinal vibration in which the vector 
is parallel to the temperature gradient at the boundaries: n (0, 0, i). Equations (i) in 
this case allow for a solution which describes the plane-parallel advective flow of the fol- 
lowing structure: 

v~ = % = O, v~ = v (x); T = Az + ~ (x); 

p = p ( x ,  z); w~=w~=0, w,=w(x). (2) 

After dropping pressure and after separation of the variables, from Eqs. (i) we obtain 
a system of ordinary differential equations (the prime denotes differentiation with respect 
to the lateral x coordinate) 

vv" + ~Aw - -  g~Ax = Cl, 

X~= Av, ~--w = Cs, (3) 

where C l and C 2 are the constants of variable separation. We will assume the flow to be 
closed (the opposite ends of the layer z + • are impermeable to the liquid); in this case, 
the profiles of v, ~, and w are odd functions of x, and C l = C 2 = 0. Conditions of adhesion 
v(• = 0 are set for the boundaries of the layer. As regards temperature, we will subse- 
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Fig. i. Profiles of dimensionless velocity 
(in units of g~AhB/v) for the case of high 
heat-conduction boundaries. 

sequently consider two boundary-layer versions: a) the boundaries exhibit high thermal con- 
ductivity and at these boundaries we maintain the temperature T(• = Az, i.e., T(• = 0; 
b) thermally insulated boundaries, i.e., T'(• = 0. 

Let us present the profiles of the quantities v, ~, and w, characterizing the advective 
flow. In case a) the solution of the problem has the form 

g~Ah~ 1 [-chr~sinr~ shr~cos r~ ] (4) 
v = 2v 8~r ~" / chr---~-Ynr sh r cos r-  ' 

z=w=g[~A2h5 1 [~ l /chr~sin/~ shr~cosr~)] 
4v---~.-~-- 81 ~ shr c a r  ~ chrsinr ' (5)  

where ~ = x/h is a dimensionless lateral coordinate; r = (ch2h~/4vX) I/~ is the dimensionless 
vibration parameter associated with the Rayleigh vibration number through the relationship 
Rav = 4r4; 5~ = tanrcothr + cotanrthr. 

For thermally insulated boundaries (case b)) we obtain 

o - -  4 ~  r~ - - [  c h r s i n r  s h r c o s r  ' 

4~ E r ~ ~- - -  2 r  ~, sh r cos r -~ ch--~sin--~ ' ( 7 )  

where 6 2 = sh2rsin2r/(sh2r + sin2r). 

The profiles of velocity (4) and temperature (5) for the case of boundaries exhibiting 
high heat conduction are shown in Figs. I and 2a. As we can see, the flow consists of two 
oppositely directed advective streams: in the upper portion of the layer the warmer liquid 
flows in a direction opposite to the longitudinal temperature gradient, while in the lower 
portion the cold liquid moves in the direction of the gradient. At the limit as r + 0, from 
formulas (4) and (5) we obtain certain distributions which correspond to the absence of vib- 
ration: 

v - -  g~AhS6v (~ - -  ~)' ~ = g~A2h5360vZ (3~5 - -  l O~ 3 q- 7~). ( 8 ) 

With an increase in the vibration parameter r the flow is retarded and the lateral non- 
uniformity of the temperature field diminishes. With larger r the flow assumes the structure 
of noninteracting boundary layers whose thickness with increasing r diminishes as h/r. 

In the case of thermally insulated boundaries [formulas (6) and (7)] the velocity pro- 
files are similar in shape to those shown in Fig. i, differing from these only in terms of 
scale that is dependent on r. The effect of flow retardation as a consequence of vibration 
is expressed more strongly than in the case of boundaries of high heat conduction. In the 
absence of vibration (r = 0), at the limit from formulas (6) and (7) we have the same velo- 
city profile as in (8), and the temperature distribution has the form 

-- g~AZh5 (3~ 5 - -  10~ 3 -~- 15~). ( 9 )  
360v~ 

The t e m p e r a t u r e  p r o f i l e s  ( 7 )  a r e  shown in  F i g .  2b .  The s i g n i f i c a n t  d i f f e r e n c e  f r o m  F i g .  2a  
l i e s  i n  t h e  f o r m a t i o n  o f  a r e l a t i v e l y  g r e a t e r  t e m p e r a t u r e  d i f f e r e n c e  a c r o s s  t h e  b o u n d a r y  
l a y e r s  
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Fig. 2. Profiles of dimensionless temperature (in units of 
g~AZhS/v• for the case of high heat-conduction boundaries 
(a) and for thermally insulated boundaries (b). 

O=~(h) - -~( - -h) - -  g~AZhSvx 2r'l [I r4 sh2r q- sin2rShZr+sinZr ]l " ( 1 0 ) 

Without vibration % = 2g~A2hS/45v• with an increase in r the temperature difference dimin- 
ishes in proportion to i/r 4. 

The pronounced retarding effect of vibration in the case of thermally insulated boun- 
daries is understandable. We know [7] that in a layer with a longitudinal temperature gradi- 
ent in the presence also of a lateral temperature difference the longitudinal high-frequency 
vibration itself (in the absence of a static gravity field) leads to the appearance of an 
averaged flow whose velocity near the heated boundary is directed along the gradient; thus, 
the gravitational-advective and vibrational-convective components of the flow exhibit oppos- 
ing directions. 

The intensity of the flow can be characterized by the flow rate of the liquid in one 
of the opposed flows 

Q = S ~ (11)  
--a 

If no vibration is present in either of these cases, Q0 = g~Ah~/24v. 
ration for cases a) and b) we have, respectively, 

Q_Q__ = 6 s h r - - s i n r  . (12) 

Q0 r 3 c h  r + c ~  r 

Q_______ 1 2  (shr--sin'r)?(chr--cosr) (13) 
Oo ~ sh 2r -Jr sin 2r 

With an i n c r e a s e  in  r t he  r a t e  of  f low d i m i n i s h e s  m o n o t o n i c a l l y  ( F i g .  3 ) .  For l a r g e  
r we have an a s y m p t o t e :  a) Q/Q0 = 6 / r 3 ;  b) Q/Q0 = 6 / r ~ ,  i . e . ,  in  t h e  case  o f  t h e r m a l l y  i n -  
s u l a t e d  boundaries the intensity of the flow is smaller and diminishes more rapidly with in- 
creasing r. 

In the presence of vib- 
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Fig. 3. Relative liquid flow rate as a function 
of the vibration parameter for he,t-conducting 
(a) and thermally insulated (b) b~undaries. 
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Let us now turn to the case of vibration transverse to the plane of the layer: n (i, 
0, 0). In this case we have a solution of the problem, which describes the closed plane- 
parallel advective flow of structure (2). From the general system (i) we obtain 

~v" -- g~Ax : O, %~ : Av, m' = --A. (14) 

The first two equations of this system, together with the corresponding boundary conditions, 
determine the velocity and temperature profiles which, as we can see, coincide with the cor- 
responding profiles in the absence of vibration, i.e., Eqs. (8) and (9). The transverse vib- 
ration thus has no effect on the gravitational-advective flow and leads only to the appear- 
ance of the longitudinal pulsation velocity component which corresponds to the field w = -Ax. 

Finally, let us consider the case in which the vibration axis is horizontal and perpen- 
dicular to the temperature gradient: , (0, i, 0). Unlike the previous two cases, in the 
plane-parallel flow regime the field w now exhibits a structure w x = w z = 0, Wy = w(x, z). 
As in the case of transverse vibration, the profiles of velocity v and temperature T are in- 
dependent of the vibration parameter r and are determined from formulas (8) and (9). The 
presence of vibration leads to the appearance of a pulsation velocity component along the 
y axis with the field w = Az + T(x). 

NOTATION 

g, acceleration of the force of gravity; p, mean density; 6, v, X, coefficients of ther- 
mal expansion, kinematic viscosity, and thermal conductivity; y, unit vector directed upward 
along the vertical; A, horizontal temperature gradient; r, a dimensionless vibration param- 
eter; v, p, T, averaged fields of velocity, pressure, and temperature; w, solenoidal portion 
of the field Tn. 
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